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 Along a line

◦ geocoding with coordinates
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 Bilinear interpolation
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 There are two ways to represent continuous surface : one is 

a regular or gridded form, and the other is an irregular 

form

◦ Regular: control points to gridded surface

◦ Irregular: control points to triangulated surface
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 The primary assumption of spatial interpolation is that 

points near each other are more alike than those farther 

away; therefore, any location's values should be estimated 

based on the values of points nearby
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 Interpolation is the process of estimating unknown values 

that fall between known values. 
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 Spatial interpolation 
calculates an unknown value 
from a set of sample points 
with known values that are 
distributed across an area. 

 The distance from the cell 
with unknown value to the 
sample cells contributes to its 
final value estimation.
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 Most interpolation methods allow you 
to control the number of sample 
points used to estimate cell values. 

 For example, if you limit your sample 
to five points, the interpolator will use 
the five nearest points to estimate cell 
values.

 The distance to each sample point will 
vary depending on the distribution of 
the points. 

 If you have a lot of sample points, 
reducing the size of the sample you 
use will speed up the interpolation 
process because a smaller set of 
numbers will be used to estimate each 
cell value.
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 You can also control your sample size 
by defining a search radius. 

 The number of sample points found 
within a search radius can vary 
depending on how the points are 
distributed. 

 You can choose to use some or all of 
the samples that fall within this radius 
to calculate the cell value. 

 A variable search radius will continue 
to expand until the specified sample 
size is found. 

 A fixed search radius will use only the 
samples contained within it, 
regardless of how many or how few 
that might be.
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 Most interpolators attempt to 
smooth over these differences by 
incorporating and averaging 
values on both sides of the 
barrier. 

 The Inverse Distance Weighted 
method allows you to include 
barriers in the analysis. 

 The barrier prevents the 
interpolator from using samples 
points on one side of it. 
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When you use a barrier with 

interpolation, the estimated cell 

value is calculated from sample 

points on one side of the barrier



12



Dr. Bashar Kamal Bashir -2022

SE 466

The Inverse Distance to a Power method 

The Kriging Method

The Minimum Curvature Method

The Modified Shepard's Method 

The Natural Neighbor Method 

The Nearest Neighbor Method

The Polynomial Regression Method 
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The Radial Basis Function Interpolation Method 

The Triangulation with Linear Interpolation Method 

The Moving Average Method

The Data Metrics Methods

The Local Polynomial Method  
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 The Inverse Distance to a Power method is a weighted average interpolator, which can be 

either exact or smoothing. 

 With Inverse Distance to a Power, data are weighted during interpolation, so that the 

influence of one point, relative to another, declines with distance from the grid node. 

 Weighting is assigned to data through the use of a weighting power, which controls how the 

weighting factors drop off as distance from the grid node increases. 

 The greater the weighting power, the less effect the points, far removed from the grid node, 

have during interpolation. 

 As the power increases, the grid node value approaches the value of the nearest point. 

 For a smaller power, the weights are more evenly distributed among the neighboring data 

points. Normally, Inverse Distance to a Power behaves as an exact interpolator. 
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◦ Inverse Distance Weighted (IDW): z = f (h) where h is distance to control 

points

 As the distance increases, you will inversely weight the 

values
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 When calculating a grid node, the weights assigned to the data 

points are fractions, the sum of all the weights being equal to 

1.0. 

 When a particular observation is coincident with a grid node, the 

distance between that observation and the grid node is 0.0, that 

observation is given a weight of 1.0; all other observations are 

given weights of 0.0. Thus, the grid node is assigned the value 

of the coincident observation. 
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 The smoothing parameter is a mechanism for buffering this behavior. 

 When you assign a non-zero smoothing parameter, no point is given 

an overwhelming weight, meaning that no point is given a weighting 

factor equal to 1.0. One of the characteristics of Inverse Distance to a 

Power is the generation of "bull's-eyes" surrounding the observation 

position within the grid area. 

 A smoothing parameter can be assigned during Inverse Distance to a 

Power to reduce the "bull's-eye" effect by smoothing the interpolated 

grid.
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 Spline virtually guarantees 
you a smooth-looking 
surface. 

 Imagine stretching a rubber 
sheet so that it passes 
through all of your sample 
points 
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 Spline functions imitates a thin flexible sheet forced to pass 

close to the data points 

 The equilibrium shape of the sheet minimizes the bending 

energy which is closely related to the surface curvature 

 Repeatedly applies a smoothing equation (piecewise 

polynomial) to the surface 

 –Resulting surface passes through all points 
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 Kriging: z = f (h, v) + r where v is the semivariogram model, and r is the residual 

(i.e. difference between model and observed value)

 Similar to IDW in that 

◦ A grid is overlaid on top of control points, and the goal is to derive values at a grid point from control points

◦ Values at a grid are determined by values at nearby control points weighted by inverse distance

 Different from IDW in that

◦ It builds the model of spatial autocorrelation from known values (called “semivariogram”), and the weights 

are determined such that observed values are best fitted into the specified model

◦ By model-fitting mechanism, the estimated values are supposed to reflect the spatial structure of given data; 

it also provides the way to validate the weights (e.g. standard error of the estimate)
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 Kriging methods can be classified as linear and non-linear 

methods. All nonlinear kriging algorithms are actually linear 

kriging applied to specific nonlinear transforms of the 

original data.
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 Simple Kriging (SK)

 Ordinary Kriging (OK)

 Universal Kriging (UK)

 Disjunctive Kriging (DK)

 Indicator Kriging (IK)

 CoKriging (COK)

 Lognormal Kriging (LK)
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 Simple, ordinary, and Universal Kriging predictors are all 

linear predictors, meaning that prediction at any location is 

obtained as a weighted average of neighboring data.
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 Kriging is one of the most 
complex and powerful 
interpolators. 

 It applies sophisticated statistical 
methods that consider the 
unique characteristics of your 
dataset. In order to use Kriging 
interpolation properly, you 
should have a solid 
understanding of geostatistical 
concepts and methods.
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 Kriging is based on the idea that you can make inferences 

regarding a random function Z(x), given data points Z(x1), Z(x2), 

…Z(xn) 

 The basis of this technique is the rate at which the variance 

between points changes over space 

 This is expressed in the semivariogram which shows how the 

average difference between values at points changes with 

distance between points 
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 In this example, we want to estimate a value for point 0 

(65E, 137N), based on the 7 surrounding sample points. 

 The table indicates the (x,y) coordinates of the 7 sample 

points, their corresponding values of Z (which is the 

variable we are interested in) and their distance to point 0. 
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No X Y Z
Dis 

From 0

0 65 137 ???? 0.000

1 61 139 477 4.472

2 63 140 696 3.606

3 64 129 227 8.062

4 68 128 646 9.487

5 71 140 606 6.708

6 73 141 791 8.944

7 75 128 783 13.454
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No X Y Z Dis From 0 w=1/d^2 z*W

0 65 137

1 61 139 477 4.472 0.050003 23.85145

2 63 140 696 3.606 0.076904 53.52514

3 64 129 227 8.062 0.015386 3.492531

4 68 128 646 9.487 0.011111 7.177525

5 71 140 606 6.708 0.022224 13.46749

6 73 141 791 8.944 0.012501 9.888101

7 75 128 783 13.454 0.005525 4.325725

total 0.193652 115.728

32

Z= 115.7279559  / 0.19365218= 597.607
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 First, the distance matrix.

 variances will be calculated based on the distance between points using Exponential model :  

34

0 1 2 3 4 5 6 7

0 0.000 4.472 3.606 8.062 9.487 6.708 8.944 13.454

1 4.472 0.000 2.236 10.440 13.038 10.050 12.166 17.804

2 3.606 2.236 0.000 11.045 13.000 8.000 10.050 16.971

3 8.062 10.440 11.045 0.000 4.123 13.038 15.000 11.045

4 9.487 13.038 13.000 4.123 0.000 12.369 13.928 7.000

5 6.708 10.050 8.000 13.038 12.369 0.000 2.236 12.649

6 8.944 12.166 10.050 15.000 13.928 2.236 0.000 13.153

7 13.454 17.804 16.971 11.045 7.000 12.649 13.153 0.000
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 where c0 is the nugget effect. 

 The sill is c0+c1. 

 The range for the exponential model is defined to be 3a at 

which the variogram is of 95% of the sill

36

  /
10 1)( hecch 

(h) = C(0) - C(h)
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10.000 5.113 0.436 0.200 0.490 0.260 1.000 1

5.113 10.000 0.364 0.202 0.907 0.490 0.062 1

0.436 0.364 10.000 2.903 0.200 0.111 0.364 1

0.200 0.202 2.903 10.000 0.245 0.153 1.225 1

0.490 0.907 0.200 0.245 10.000 5.113 0.225 1

0.260 0.490 0.111 0.153 5.113 10.000 0.193 1

0.048 0.062 0.364 1.225 0.225 0.193 10.000 1

1 1 1 1 1 1 1 0
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0.128 -0.075 -0.011 -0.006 -0.006 -0.007 -0.022 0.113

-0.078 0.129 -0.011 -0.010 -0.016 -0.009 -0.004 0.135

-0.013 -0.010 0.098 -0.042 -0.010 -0.010 -0.013 0.159

-0.009 -0.009 -0.042 0.102 -0.009 -0.009 -0.024 0.141

-0.008 -0.015 -0.010 -0.009 0.130 -0.077 -0.011 0.119

-0.009 -0.008 -0.010 -0.009 -0.077 0.126 -0.012 0.143

-0.012 -0.011 -0.014 -0.025 -0.012 -0.013 0.086 0.191

0.138 0.123 0.158 0.143 0.119 0.143 0.177 -2.205
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2.614

3.390

0.890

0.581

1.337

0.683

0.177

1

The Inverse of C is:
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0.162

0.324

0.130

0.087

0.152

0.058

0.087

-0.918
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 Estimated value for point O:

 (477)( 0.162)+ (696)( 0.324)+( 227)( 0.130)+( 646)( 

0.087)+( 606)( 0.152)+( 791)( 0.058)+( 783)( 0.087) = 

594.5796
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